
Compiling Parameterized X86-TSO
Concurrent Programs to Cubicle-W

Sylvain Conchon1,2, David Declerck1,2, and Fatiha Zäıdi1

1 LRI (CNRS & Univ. Paris-Sud), Université Paris-Saclay, F-91405 Orsay
2 Inria, Université Paris-Saclay, F-91120 Palaiseau

Abstract. We present PMCx86, a compiler from x86 concurrent pro-
grams to Cubicle-W, a model checker for parameterized weak memory
array-based transition systems. Our tool handles x86 concurrent pro-
grams designed to be executed for an arbitrary number of threads and
under the TSO weak memory model. The correctness of our approach
relies on a simulation result to show that the translation preserves x86-
TSO semantics. To show the effectiveness of our translation scheme, we
prove the safety of parameterized critical primitives found in operating
systems like mutexes and synchronization barriers. To our knowledge,
this is the first approach to prove safety of such parameterized x86-TSO
programs.

Keywords: Model Checking, MCMT, SMT, Weak Memory, x86, TSO

1 Introduction

Optimizations found in modern multiprocessors architectures affect the order in
which memory operations from different threads may take place. For instance,
on Intel x86 processors [20], each hardware thread has a write buffer in which
it temporarily stores values before they reach the main memory. This allows the
processor to execute the next instruction immediately but delays the store.

From an x86 programmer’s point of view, the main drawback of this new
memory model, called x86-TSO [24], is that most concurrent algorithms, de-
signed under a global time (sequential consistency – SC) assumption [22], are
incorrect on weaker semantics. However, while concurrent programming is known
to be difficult, it is even harder to design correct programs when one has to deal
with memory reordering.

This situation is further complicated by the fact that critical concurrent
primitives found (for instance) in operating systems are usually designed to be
executed for an arbitrary number of processes. Mutual exclusion algorithms or
synchronization barriers are typical examples of such parameterized programs.

As a consequence, the design and verification of parameterized x86-TSO pro-
grams is a very hard challenge due to the state explosion problem caused by the
combination of both unbouded writing buffers and unbounded number of threads.

Checking safety of programs running under a relaxed memory model has been
shown to be a (non-primitive recursive-)hard problem [9, 11] and various verifi-
cation techniques have been applied to handle it [3, 10, 12, 13, 16, 21, 23]. Among

those techniques, model checking of systems under weak memory assumption has
been investigated and several tools have been implemented. The list of state-of-
the-art model checkers for weak memory includes CBMC [7], MEMORAX [4]
and TRENCHER [10].

Model checking has also been applied to parameterized systems for a long
time ago [14, 8, 17] and automatic tools for the analysis of such systems exist. The
list of state-of-the-art parametric model checkers includes MCMT [18], Undip [6],
PFS [5] and Cubicle [15]. But until now, there is no model checker for reasoning
about both weak memory and parameterized models, except Cubicle which has
been extended recently to a new version, Cubicle-W [1], to verify parameterized
array-based systems with weak memories.

In this paper, we present PMCx86 [2], a compiler from x86 assembly lan-
guage to Cubicle-W. The main originality of PMCx86 is that it can handle x86
concurrent programs designed to be executed for an arbitrary number of threads
and under the TSO weak memory model. Our contributions are as follows:

– A compilation scheme from x86 to array-based transition systems with weak
memory assumptions

– A simulation result to show that our translation preserves the TSO semantics
– An end-to-end tool that allows the verification of real critical x86 primitives

found in OS like mutex or synchronization barriers.

To our knowledge, this is the first framework to model check parameterized
x86-TSO concurrent programs.

In the remainder, we present in Section 2 the syntax and semantics of Cubicle-
W. In Section 3, we present the x86-TSO fragment supported by our framework.
Section 4 is about the translation to Cubicle-W. Finally Section 5 exhibits the
experiments and the obtained results and we conclude and give some lines for
future work in Section 6.

2 Overview of Cubicle-W

In this section, we present the syntax and semantics of Cubicle-W’s input lan-
guage. This language is the target of our compiler PMCx86.

To illustrate our presentation, we use the crafted example shown in Figure 1.
A Cubicle-W input file starts with enumerated type declarations (type keyword),
followed by variables declarations. Thread-local (i.e. non shared) variables are
declared as proc-indexed arrays. Those variables behave as sequential consistent
(SC) memories. The weak var keyword is used to declare shared variables sub-
ject to weak memory effects. Similarly, shared weak arrays indexed by process
identifiers are defined using weak array declarations. The initial states of the
system are described by a (implicitly universally quantified) logical formula in-
troduced by the init keyword. Similarly, the dangerous states are described by
logical formulas introduced by the unsafe keyword and implicitly existentially
quantified by process variables. Transitions are introduced by the transition

type loc = L1 | L2 | L3 | END

array PC[proc] : loc

weak var X : int

weak array A[proc] : int

init (p) {
PC[p] = L1 && X = 0 && A[p] = 0 }

unsafe (p q) {
PC[p] = End && PC[q] = End }

transition t1 (p)

requires { PC[p] = L1 }
{ p @ A[p] := 1; PC[p] := L2 }

transition t2 (p q)

requires { PC[p] = L2 &&

fence(p) && p @ A[q] <> 0 }
{ PC[p] := L3 }

transition t3 (p)

requires { PC[p] = L3 }
{ p @ X := p @ X + 1; PC[p] := End }

Fig. 1. A crafted Cubicle-W example illustrating its syntactic features

keyword and are parameterized by existentially quantified process variables. Im-
plicitly, the first parameter of each transition indicates which process performs
the action. Each transition is composed of two parts: the guard and the actions.
The guard is a logical formula that determines when the transition is enabled.
The actions part is a set of updates on SC and weak variable. The guard evalu-
ation and actions are performed atomically, i.e. no other transition can occur in
between. In both parts, accesses to weak variables are performed using the p @

X notation, indicating that process p accesses the variable X. Cubicle-W imposes
one restriction : All weak variable accesses in the same transition (guard and
action) must be performed by the same process.

Cubicle-W simulates a write buffer semantics à la TSO for weak variables (or
weak arrays). This means that each process has an associated FIFO-like write
buffer, and when a transition performs writes to weak variables, all these writes
are enqueued as a single update in the buffer. In a non-deterministic manner, an
update may be dequeued from the buffer and committed to the weak variables.
A process always knows the most recent value it wrote to a weak variables: when
evaluating a read, a process first checks in its own buffer for the most recent write
to the weak variable and returns the associated value, if any, otherwise it just
returns the value from the variable itself. A transition guard may use a fence(p)

predicate (as in transition t2 for instance) to indicate that the transition may
only be taken when process p’s buffer is empty. When a transition contains both
a read and a write (transition t3), it is given a lock semantics: it may be taken
only when the buffer of the process performing the actions is empty (a fence(p)

predicate is syntactically added to the transition guard), and the writes to weak
variables bypass the buffer.

Formal semantics of Cubicle-W

To make the semantics of Cubicle-W more formal, we give the pseudo-code of an
interpreter for its transition systems in Algorithm 1. This interpreter makes use
of data structures for buffers and some functions that we briefly describe here.

Buffers. A buffer (type buffer) is a queue containing updates. An update is
made up of several writes, which associate a variable to a value. The operations
on these buffers are:

– is empty: determines if a buffer is empty
– enqueue: add an update at the head of the buffer
– dequeue: get and remove the update at the tail of the buffer
– peek: inspect every update from head to tail in the buffer until a given

variable is found ; if it is, return the associated value, otherwise, return
None

Auxiliary functions. The upreg(t) function returns the set of actions on local
variables from a transition t. Similarly, the upmem(t) function returns the set
of actions on weak variables. The req(t) function returns the whole transition
guard. The locked(t) function determines if the transition has lock semantics.
More importantly, the eval(S, e) function evaluates the expression e in state S.
It is trivial for most cases, except for reads and fences.

function eval(S, e) : begin
match e with
• i @ X →

match peek(B[i], X) with
• Some v → return v
• None → return W[X]

end

• fence(i) → is empty(B[i])
• ... → . . .

end

end

The interpreter takes the form of an infinite loop that randomly chooses be-
tween executing a transition t ready to be triggered for some process arguments
σ (i.e. eval(S, req(t)σ = true) or flushing a non-empty buffer B[i] of some pro-
cess i. The execution of a transition first directly assigns local variables R[i] in
qthe (SC) memory. Then, it constructs an update value U with all pairs of (vari-
able, value) corresponding to the weak assignments of t. If the transition has
the locked semantics, this update value is enqueued in the buffer of the process
which performs the action. Otherwise, its assignments are flushed in memory.

3 Supported x86-TSO fragment

We present in this section the subset of 32-bit x86 assembly instructions sup-
ported by our tool. In order to guide (and prove correct) our translation to
Cubicle-W, we also give an operational semantics of this fragment.

Algorithm 1: A Cubicle-W interpreter

Input: a number of processes n and a set of transitions τ
State: S = { R : (register 7→ value) map

W : (variable 7→ value) map

B : (proc 7→ buffer) map }
procedure run(n, τ) : begin

while true do
non-deterministically choose
• a transition t and a substitution σ s.t eval(S, req(t)σ) = true →

foreach R[i] := e in upreg(t) do R[R[iσ]← eval(S, eσ)];
U := ∅;
foreach X := e in upmem(t) do

U := (X, eval(S, eσ)) ++ U
end foreach
if locked(t) = false then

enqueue(B[i], U)
else

foreach (X, v) in U do W[X ← v]
end if

• a process i s.t is empty(B[i]) = false →
let U = dequeue(B[i]) in
foreach (X, v) in U do W[X ← v]

or exit if no choice possible

end while

end

Input programs are written in a NASM-like syntax. The six general purpose
registers eax, ebx, ecx, edx, esi and edi are available. Instruction operands may
be registers, immediate data, and direct memory references of the form [var].
Memory accesses occur under the TSO weak memory semantics. The supported
instructions are:

– Load/store: mov
– Arithmetic: add, sub, inc, dec
– Exchange: xadd, xchg
– Compare: cmp
– Jump: jmp, jCC
– Memory ordering: mfence, lock prefix (on add, sub, inc, dec, xadd, xchg)

In order to write (and translate) parametric programs, we allow data declarations
to be decorated with an annotation ! as counter which specifies a counter on
the number of threads. These counters are still treated as regular integers on
x86, but may only be manipulated by the inc, dec, cmp and mov instructions.
Moreover, they will be translated differently in Cubicle-W.

For the sake of simplicity, we only introduce in this section the most relevant
aspects of our fragment, as shown in the grammar in Figure 2. The interested

reader may refer to Appendix A for a detailed grammar of the supported frag-
ment.

integer, n integer
register, r register
variable, x variable
label, l instruction label (index in instruction array)
thread id, tid thread identifier
instruction, i ::=

| mov r, n load a constant into a register
| mov r, x load a variable into a register
| mov x, n write a constant into a variable
| mov x, r write the contents of a register into a variable
| add x, r add the contents of a register to a variable
| inc x increment a variable by 1
| cmp r, r’ compare the contents of two registers
| cmp x, n compare a variable to a constant
| je l branch if equal (ZF=1)
| jne l branch if different (ZF=0)
| lock i lock prefix to perform atomic RMW instructions
| mfence memory fence

action, a ::=
| i the execution of an instruction
| ε flush of a buffer

thread, t ::=
| (i array) array of instructions

program, p ::=
| (tid 7→ t) map a map of threads identifiers to thread instructions

Fig. 2. Abstract syntax tree of x86 program

In our abstract syntax, a thread is described by an array of instructions and
a program is just a map from thread identifiers to threads. A thread executes an
action which is either an instrucion or a flush of its buffer.

Representation of x86-TSO states

In order to give the semantics of this fragment, we need to define an x86-TSO
memory state S. Such state is composed of two parts: the set of thread’s local
states LS and the shared memory M . Each thread local state ls is composed of
its instruction pointer eip, its zero flag zf, its set of registers Q, and its writing
buffer B.

S = (LS ×M) An x86-TSO machine state
M = (var 7→ int) map A memory: dictionary from variables to integers
LS = (tid 7→ ls) map The thread local states: dictionary from

thread identifiers to their states
ls = (eip× zf×Q×B) A thread local state
Q = (reg 7→ int) map A thread’s registers: dictionary from

register names do integers
B = (var × int) queue A thread’s TSO write buffer
eip = int A thread’s instruction pointer
zf = int A thread’s zero flag
var The set of all variables
tid The set of all thread identifiers
reg The set of all register names

The eip register represents a thread’s instruction pointer, i.e. the threads’s
current program point. For simplicity, we choose to represent it using an integer
type. The zf is a boolean register, commonly used to store the result of the
compare instruction, and more generally of any arithmetic instruction. It must
be set to true if the result of the last instruction was 0, and false otherwise. We
represent it using an integer, with the usual convention that 0 = false and 1 =
true. Writing buffers are represented as queues containing pairs of variables and
integers. Initially, the x86-TSO machine is in a state Sinit such that all thread’s
eip are set to 0, all buffers are empty, and all registers and the shared memory
are in an undetermined state.

Notations for manipulating TSO buffers

When describing the instruction semantics, we use the following notations to
manipulate the buffers:

x ∈ B True if at least one pair in B concerns variable x

x /∈ B True if no pair in B concerns variable x

B = ∅ True if B is empty

B1 ++ B2 Concatenation of B1 and B2

(x, n) ++ B Prepend (x, n) to the head of B

B ++ (x, n) Append (x, n) to the tail of B

Semantics of programs

The semantics of a program is defined by the smallest relation
tid:a−−−→ on x86-TSO

machine states that satisfies the rule Scheduling below.
We define a scheduling function πp(S) which given a program p and a state

S chooses the next action to be executed by a thread.

πp(LS,M) = tid : a LS(tid) = ls (ls,M)
a−→ (ls′,M ′)

(LS,M)
tid:a−−−→ (LS[t 7→ ls′],M ′)

Scheduling

Semantics of instructions

The semantics of instructions is given by the smallest relation
i−→ that satisfies

the rule below.
There are as many rules as required to cover the different combination of

operand kinds (constant, register, memory). Here, for the sake of readability, we
only present some rules that are TSO specific and explain the main principles
of that relaxed memory semantics.

The rule MovVarCst assigns a shared variable x with a constant n. As assign-
ments are delayed in TSO, a new pairs (x, n) is enqueued in buffer B.

a = mov x, n

((eip, zf,Q,B),M)
a−→ ((eip+ 1, zf,Q, (x, n) ++ B),M)

MovVarCst

The next two rules illustrate the TSO semantics of an instruction mov r, x that
assigns to a register r the contents of a shared memory x. When the thread’s
buffer does not have a write on x, MovRegVarM applies and the value of x is
directly read in memory.

a = mov r, x x /∈ B M(x) = n

((eip, zf,Q,B),M)
a−→ ((eip+ 1, zf,Q[r 7→ n], B),M)

MovRegVarM

On the contrary, when the thread’s buffer contains a pair (x, n), rule MovReg-
VarB looks for the value of the most recent assignment to x in B.

a = mov r, x B = B1 ++ (x, n) ++ B2 x /∈ B1

((eip, zf,Q,B),M)
a−→ ((eip+ 1, zf,Q[r 7→ n], B),M)

MovRegVarB

The semantics of non-atomic read-modify-write instructions like add is still
given by a single rule. Indeed, since the write is buffered, it has the same effect
as splitting the read and the write in two rules.

a = add x, r x /∈ B M(x) +Q(r) = n

((eip, zf,Q,B),M)
a−→ ((eip+ 1, iszero(n), Q, (x, n) ++ B),M)

AddVarMReg

a = add x, r B = B1 ++ (x,m) ++ B2 x /∈ B1 m+Q(r) = n

((eip, zf,Q,B),M)
a−→ ((eip+ 1, iszero(n), Q, (x, n) ++ B),M)

AddVarBReg

When the lock prefix is used on a read-modify-write instruction, we simply re-
quire the thread’s buffer to be empty, and directly write to memory.

a = lock add x, r x /∈ B M(x) +Q(r) = n

((eip, zf,Q,B),M)
a−→ ((eip+ 1, iszero(n), Q,B),M [x 7→ n])

LockAddVarReg

Last, the rule MFence describes the effect of a memory fence which enforces a
thread buffer to be flushed.

a = mfence B = ∅
((eip, zf,Q,B),M)

a−→ ((eip+ 1, zf,Q,B),M)
MFence

Buffer / Memory synchronization

Buffers can flush their oldest writes to memory in an asynchronous manner. We
express this using a rule that only involves the state of buffers, without involving
the eip registers.

a = ε B = B1 ++ (x, n)

((eip, zf,Q,B),M)
a−→ ((eip, zf,Q,B1),M [x 7→ n])

WriteMem

4 Translation to Cubicle-W

We represent x86-TSO states in Cubicle-W by a set of variables corresponding to
the shared variables and local states of each thread. Local registers are encoded
as elements of an array indexed by process identifiers. The type of the array
depends on the kind of values carried by the registers.

Instruction pointers. They are represented by a PC array. Program points
are given an enumerated type loc, whose elements are of the form L0, ... L1.
The number of these elements can be determined statically at compile time: it
depends on the length of the longest instruction sequence.

Zero flags. They are represented by a ZF array of type int. We use the conven-
tion that n = 0 ≡ true and n 6= 0 ≡ false. Note that this is the opposite of x86:
this allows to compute this flag more easily, as we simply set it to the result of
the last arithmetic operation. This allows to reduce the number of transitions,
as we do not have to make any further operation to compute it.

Shared variables. Each shared variable X gives rise to an weak X : int dec-
laration. Counters (see below) are mapped to weak arrays of type bool.

Translation of x86-TSO instructions

For the sake of readability, we only give the translation of the subset of instruc-
tions given in the previous section.

We define a compilation function C that takes as input a thread identifier, an
instruction, and the instruction position in the array (this is equivalent to the
instruction pointer). It returns a set of Cubicle-W transitions that simulates the
instruction.

The first rule TMovVarCst explains how to translate the write of a constant
into a shared variable. It simply amounts to use Cubicle-W’s write instruction on

weak variables. This instruction imposes to prefix the operation with the thread
identifier which performs the assignment.

C(t ; mov x, n ; i) = TMovVarCst
transition mov var csti(t)

requires { PC[t] = Li }
{ t @ X := n; PC[t] = Li+1 }

The next rule is the opposite operation: the read of a variable into a register.
To achieve it, we only rely on the read operation on shared variables. Similarly
to write instructions, reads must be prefixed with a thread identifier.

C(t ; mov r, x ; i) = TMovRegVar
transition mov reg vari(t)

requires { PC[t] = Li }
{ R[t] := t @ X; PC[t] = Li+1 }

Adding the contents of a register to a variable is a read-modify-write oper-
ation. As Cubicle-W makes everything inside a transition atomic, we need two
transitions to translate this operation. The first one, TAddVarReg1, reads the
shared variable X, sums it with the local register and stores the result into a tem-
porary register T[t]. The second rule, TAddVarReg2, stores the contents of
this temporary register into the variable X and updates the zero flag accordingly.

C(t ; add x, r ; i) = TAddVarReg1
transition add var reg 1i(t)

requires { PC[t] = Li }
{ T[t] := t @ X + R[t]; PC[t] = Lxi }

TAddVarReg2
transition add var reg 2i(t)

requires { PC[t] = Lxi }
{ t @ X := R[t]; ZF[t] := T[t];

PC[t] = Li+1 }

Translating the atomic counterpart of this operation is very simple, since
Cubicle-W transitions are atomic. We just need a single transition, as given by
rule TLockAddVarReg.

C(t ; add x, r ; i) = TLockAddVarReg
transition lockadd var regi(t)

requires { PC[t] = Li }
{ t @ X := t @ X + R[t];

ZF[t] := t @ X + R[t];

PC[t] = Li+1 }

The translation of a memory fence simply relies on the fence predicate of
Cubicle-W to express that the transition may only be taken if the thread’s
buffer is empty.

C(t ; mfence ; i) = TMFence
transition mfencei(t)

requires { PC[t] = Li && fence(t) }
{ PC[t] = Li+1 }

Translation of operations on counters

Operations on counters are restricted and translated differently. When X is a
variable declared with a ! as counter annotation, our tool only supports the
following operations:

mov X, 0 reset
inc X incrementation
cmp X, N comparison to N
cmp X, 0

where N is an abstract value represented the (parameterized) number of threads.
At first sight, it would be tempting to translate counters directly as variables

of type int. However, this solution makes it impossible to compare a counter
with N as Cubicle does not explicitly provide this constant. To solve this issue,
we represent counters by weak arrays of Booleans indexed by processes. Each
operation is then encoded in a unary numeral system. In the rest of this section,
we only describe the first three ones.

Reset. To reset a counter, we just need to apply the transition given by the rule
below which writes the value False in all the array cells.

C(t ; mov x, n ; i) = TMovCnt0
transition mov cnt0i(t)

requires { PC[t] = Li }
{ t @ X[k] := case | : False;

PC[t] = Li+1 }

Incrementation. As for the incrementation of shared variables, a counter in-
crementation has to be performed in two steps. This first one for reading the
contents of the variable and the second one adding one and assigning the new
value. In our unary numeral system, adding one to a variable amounts to switch
an array cell from False to True. The goal of the first transition is thus to find
a cell equal to False and the second rule performs the assignment to True. The
rules are duplicated as we may either switch the cell belonging to the running
thread or to another thread.

C(t ; inc x ; i) = transition inc cntS 1i(t) TIncCntS1
requires { PC[t] = Li && t @ X[t] = False }
{ PC[t] = Lxi }
transition inc cntS 2i(t) TIncCntS2
requires { PC[t] = Lxi }
{ t @ X[t] := True; ZF[t] := 1;

PC[t] = Li+1 }
transition inc cntO 1i(t o) TIncCntO1
requires { PC[t] = Li && t @ X[o] = False}
{ PC[t] = Lyi; TP[t] = o }
transition inc cntO 2i(t o) TIncCntO2
requires { PC[t] = Lyi && TP[t] = o}
{ t @ X[o] := True; ZF[t] := 1;

PC[t] = Li+1 }

Comparison. We design three transitions for comparing a counter with the
(parametric) number N of threads. To check if a counter is equal to N , we
just check whether all cell of the array are True, using a universally quantified
process variable. If it is the case, then the counter has reached the total number
of threads, and the zero flag is set to 0. To check the opposite, we check if there
exists a cell with the value False. In that case, the counter has not reached
the total number of threads yet, so the zero flag is set to 1. Note that we need
two transitions to achieve this: one to compare the cell owned by the executing
thread, and another to compare any other cell.

C(t ; cmp x,N ; i) = TCmpCntEqN
transition cmp cnt eqNi(t)

requires { PC[t] = Li
&& t @ X[t] = True

&& forall other o.

t @ X[o] = True }
{ ZF[t] = 0; PC[t] = Lxi }

TCmpCntSNeqN
transition cmp cntS NeqNi(t)

requires { PC[t] = Lxi
&& t @ X[t] = False }

{ ZF[t] := 1; PC[t] = Li+1 }

TCmpCntONeqN
transition cmp cntO NeqNi(t o)

requires { PC[t] = Lxi
&& t @ X[o] = False }

{ ZF[t] := 1; PC[t] = Li+1 }

Translation of programs

In order to compile all instructions of a thread, we define a compilation function
Ct that takes as input a thread identifier and an instruction array. This function
returns the set of Cubicle-W transitions corresponding to the translation of every
instruction in the array.

Ct(tid ; t) =

|t|⋃
i=1

C(tid ; t(i) ; i)

Similarly, we define a compilation function Cp that takes as input an x86
program and returns the set of transitions corresponding to the translation of
every instruction in every thread.

Cp(p) =
⋃

tid ∈ dom(p)

Ct(tid ; p(tid))

Correctness

In order to prove the correctness of our approach, we demonstrate a simulation
lemma between x86 programs and weak array-based transition systems obtained
by translation.

Let S = (LS×M) be an x86-TSO machine state. Translating S to a Cubicle-
W state A is straighforward, except for the memory map M and the contents of
each thread buffer. For that, we define a predicate T (S,A) on Cubicle-W states
such that T (S,A) is true if and only if:

– Local thread registers, eip and flags in LS contain the same values as their
array-based representation

– For each local buffer B of a thread tid and for all shared variable X

if (X 6∈ B and M(X) = v) or (B = B1 ++ (X, v) ++ B2 and X /∈ B1) then

• if X is a counter, then tid @ X[k] = True is true for v thread
identifiers in A
• otherwise, tid @ X = v is true in A

Lemma 1 (Simulation). For all program p and state S, if S
tid:a−−−→ S′ then

their exists a Cubicle-W state A such that T (S,A) is true and Cp(p) can move
from A to A′ and T (S′, A′) is true as well.

Proof. By a simple inspection of each transition rule of x86 instructions. See
Appendix B for more details.

Theorem 1. Given a program p, if Cubicle-W returns safe on Cp(p) then p
cannot reach an unsafe state (as described in the section unsafe_prop of p).

Proof. By induction on the length of the reduction p
tid:a−−−→

+

⊥ and by case on
each step (using simulation lemma).

5 Experiments

We used our framework to translate and check the correctness of several mutual
exclusion algorithms, as well as a sense reversing barrier algorithm. In this sec-
tion, we only describe two of them. The source code and Cubicle-W translations
of all the examples can be found on the tool page [2].

Figure 3 is a spinlock implementation found in the Linux kernel (version
2.6.24.7), and is an example used in [24]. It requires a single shared variable
Lock, initialized to 1, and the use of the lock dec instruction. The lock prefix is
required to make this algorithm correct. To enter the critical section, a thread
t has to atomically decrement the contents of the Lock variable. It then checks
the result of the operation, using a conditional branch instruction: if the result is
not negative, it means that Lock was 1 before the decrement, so t performs the
branch to enter the critical section. If the result is negative, it means that Lock

was 0 or less before the decrement, so another thread is already in the critical
section : t enters a spinlock, waiting for Lock to be 1 before retrying to enter
the critical section. To release the lock, the thread in critical section simply sets
back Lock to 1.

begin shared_data

Lock dd 1

end shared_data

begin unsafe_prop

eip[$t1] = cs &&

eip[$t2] = cs

end unsafe_prop

begin init_code

start threads
end init_code

begin thread_code

acquire: lock dec dword [Lock]

jns cs

spin: cmp dword [Lock], 0

jle spin

jmp acquire

cs: ; critical section

exit: mov dword [Lock], 1

jmp acquire

end thread_code

Fig. 3. A Linux Spinlock implementation

Our next example shown in Figure 4 is a Sense Reversing Barrier[19]. It allows
a number of threads to synchronize their execution flow at a specific program
point. It requires a process counter count and a boolean variable sense that
gives the sense of the barrier. It locally uses the esi register to track the current
value of the sense variable. Initially, count is set to N , and sense and esi are
to 0. Threads start by reversing esi. Then, each thread atomically decrements
the count variable. If, as a result of this operation, the count is not 0, then the
thread enters a spinlock that waits for sense to be equal to esi (that is, for the
barrier sense to be changed). If however the count reaches 0, then the thread
resets count to N and copies esi into sense, which in effect reverses the sense of
the barrier. At this point, threads that were waiting at the spinlock are released.

The results of our experiments are given in the table below. As a measure of
the problem’s complexity, we give the number of Registers, Weak variable and
Transitions of the corresponding Cubicle-W program. The CE Length column
gives the length of the counter-example, where applicable. It is the smallest
number of transitions that lead to a state that violates the safety property. The
Time column is the total time to prove the safety property (or to exhibit a
counter-example). We considered both correct (S) and incorrect (US) versions
of program. Incorrect versions are obtained by removing the lock prefixes.

begin shared_data

sense dd 0

count dd N ! as counter

end shared_data

begin unsafe_prop

eip[$t1] = entr &&

eip[$t2] = end

end unsafe_prop

begin init_code

start threads
end init_code

begin thread_code

mov esi, 0 ; esi = local sense

entr: not esi

lock dec dword [count]

jne spin

last: mov dword [count], N

mov dword [sense], esi

jmp end

spin: cmp dword [sense], esi

jne spin

end: nop

end thread_code

Fig. 4. A Sense Reversing Barrier algorithm in x86

Case study Regs. Weak Vars. Trans. CE Length Time
naive mutex (dlock.) (US) 3 2 11 12 0,38s
naive mutex (no dlock.) (US) 3 2 14 12 0,38s
mutex w/ xchg (US) 4 1 8 10 0,07s
mutex w/ xchg (S) 3 1 7 - 0,08ss
mutex w/ cmpxchg (US) 4 1 10 10 0,12s
mutex w/ cmpxchg (S) 4 1 8 - 0,47s
Linux spinlock (US) 4 1 10 6 0,06s
Linux spinlock (S) 4 1 9 - 0,30s
sense barrier (sing. ent.) (S) 3 2 15 - 0,27s
sense barrier (mult. ent.) (S) 3 2 16 - 1m37s

6 Conclusion & Future Work

We have presented in this paper a compilation scheme from parameterized x86-
TSO programs to weak array-based transitions systems in Cubicle-W. The sub-
set of the 32-bit x86 assembly instructions supported allows us to express critical
concurrent primitives like mutexes and synchronization barriers. Experiments
are promising. To our knowledge, this is the first tool for proving automatically
the safety of parameterized x86-TSO programs.

An immediate line of future work is to enhance the subset of x86 that is
supported according to new experiments that will be conducted. These adding
should also be proved correct regarding the preservation of the TSO semantics.
Another line of work will be to consider others memory models as a given input
to the model checker and to make change in its reachability analysis algorithm
accordingly.

References

1. Cubicle-W, https://www.lri.fr/~declerck/cubiclew/
2. PMCX86, https://www.lri.fr/~declerck/pmcx86/
3. Abdulla, P.A., Atig, M.F., Chen, Y., Leonardsson, C., Rezine, A.: Counter-example

guided fence insertion under TSO. In: TACAS. pp. 204–219 (2012)
4. Abdulla, P.A., Atig, M.F., Chen, Y., Leonardsson, C., Rezine, A.: Memorax, a

precise and sound tool for automatic fence insertion under TSO. In: TACAS (2013)
5. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking

without transducers. In: TACAS. Springer (2007)
6. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state

processes with global conditions. In: CAV. Springer (2007)
7. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak

memory via program transformation. ESOP (2013)
8. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent

systems. Inf. Process. Lett. 22(6), 307–309 (May 1986)
9. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification

problem for weak memory models. In: POPL. pp. 7–18 (2010)
10. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness

against tso. pp. 533–553. ESOP’13, Springer-Verlag, Berlin, Heidelberg (2013)
11. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store

ordering. In: ICALP. pp. 428–440 (2011)
12. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory

models. In: CAV. pp. 107–120 (2008)
13. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential

consistency for relaxed memory models. In: TACAS. pp. 11–25 (2011)
14. Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks with many

identical finite-state processes. PODC ’86, ACM, New York, NY, USA (1986)
15. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: A parallel smt-

based model checker for parameterized systems: Tool paper. In: CAV. pp. 718–724.
CAV’12, Springer-Verlag, Berlin, Heidelberg (2012)

16. Dan, A.M., Meshman, Y., Vechev, M.T., Yahav, E.: Effective abstractions for ver-
ification under relaxed memory models. In: VMCAI. pp. 449–466 (2015)

17. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (Jul 1992)

18. Ghilardi, S., Ranise, S.: MCMT: A model checker modulo theories. In: IJCAR. pp.
22–29 (2010)

19. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (2008)

20. Intel Corporation: Intel 64 and IA-32 Architectures SDM (Dec 2016)
21. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-coherence abstractions for re-

laxed memory models. In: PLDI. pp. 187–198 (2011)
22. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-

tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (Sep 1979)
23. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion

in PSO memory systems. In: TACAS. pp. 339–353 (2013)
24. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: A rig-

orous and usable programmer’s model for x86 multiprocessors. CACM 53(7) (Jul
2010)

A Supported x86 fragment grammar

〈digit〉 ::= 0-9

〈alpha〉 ::= a-z A-Z

〈ident〉 ::= (〈alpha〉 |) (〈alpha〉 | | 〈digit〉)?

〈integer〉 ::= 〈digit〉+
〈label〉 ::= 〈ident〉 :
〈thread〉 ::= $〈ident〉
〈reg〉 ::= eax | ebx | ecx | edx | esi | edi

〈program〉 ::= 〈shareddata〉?
〈threaddata〉?
〈threadcode〉
〈unsafeprop〉

〈shareddata〉 ::= begin shared data NL

〈dline〉?
end shared data NL

〈threaddata〉 ::= begin thread data NL

〈dline〉?
end thread data NL

〈threadcode〉 ::= begin thread code NL

〈cline〉?
end thread code NL

〈unsafeprop〉 ::= begin unsafe prop NL

〈atom〉 (&& 〈atom〉)?
end unsafe prop NL

〈dline〉 ::= 〈ident〉 dd 〈integer〉 〈dannot〉? NL

〈cline〉 ::= 〈label〉? 〈instr〉 NL

〈atom〉 ::= 〈term〉 〈op〉 〈term〉
〈op〉 ::= = | <> | < | > | <= | >=
〈term〉 ::= 〈treg〉 | 〈tlvar〉 | 〈tvar〉 | 〈ident〉
〈treg〉 ::= 〈reg〉 [〈thread〉)]
〈tlvar〉 ::= 〈ident〉 [〈thread〉)]
〈tvar〉 ::= 〈thread〉 : 〈ident〉 ([〈thread〉)])?

〈dannot〉 ::= ! as counter

〈instr〉 ::= inc 〈oprm〉
| dec 〈oprm〉
| not 〈oprm〉
| add 〈oprm〉 , 〈oprmi〉
| sub 〈oprm〉 , 〈oprmi〉
| xchg 〈oprm〉 , 〈oprm〉
| xadd 〈oprm〉 , 〈opr〉
| cmp 〈oprm〉 , 〈oprmi〉
| mov 〈oprm〉 , 〈oprmi〉
| jmp 〈ident〉
| jCC 〈ident〉
| nop
| mfence
| lock 〈instr〉

〈opr〉 ::= 〈reg〉
〈oprm〉 ::= 〈reg〉 | 〈mem〉
〈oprmi〉 ::= 〈reg〉 | 〈mem〉 | 〈imm〉
〈mem〉 ::= [〈ident〉 (+ 〈thread〉)?]

〈imm〉 ::= 〈integer〉 | 〈ident〉

B Correctness

Add rule (from memory)

S A

add X, r At

S′ A′

T (S,A)

AddV arMReg

TAddV arReg1

TAddV arReg2

T (S′,A′)

Let t be a thread and S an x86-TSO state of the form (LS,M) where LS(t) =
(eip, zf,Q,B) such that X /∈ B and M(X) = n. By rule AddVarMReg, the
x86-TSO program can move to a state S′ of the form (LS′,M) where LS′(t) =
(eip′, zf ′, Q,B′) such that B′ = (X, n+Q(r)) ++ B and ∀t′ 6= t.LS′(t′) = LS(t′).
Let A be a state such that T (S,A) is true. In particular, the PC[t] register
in A is equivalent to its counterpart in S, and t @ X = n is true. Then the
rule TAddVarReg1 applies, and the Cubicle-W program reaches a state At in
which T[t] = n + R[t]. From this state, the rule TAddVarReg2 applies and
performs the operation t @ X := T[t], making the program reach a state A′

such that t @ X = n + R[t] is true and thus T (S′, A′) is true.

Add rule (from buffer)

S A

add X, r At

S′ A′

T (S,A)

AddV arBReg

TAddV arReg1

TAddV arReg2

T (S′,A′)

Let t be a thread and S an x86-TSO state of the form (LS,M) where
LS(t) = (eip, zf,Q,B) such that B = B1 ++ (X, n) ++ B2 and X /∈ B1. By
rule AddVarBReg, the x86-TSO program can move to a state S′ of the form
(LS′,M) where LS′(t) = (eip′, zf ′, Q,B′) such that B′ = (X, n + Q(r)) ++ B
and ∀t′ 6= t.LS′(t′) = LS(t′). Let A be a state such that T (S,A) is true. In
particular, the PC[t] register in A is equivalent to its counterpart in S, and
t @ X = n is true. Then the rule TAddVarReg1 applies, and the Cubicle-W
program reaches a state At in which T[t] = n + R[t]. From this state, the
rule TAddVarReg2 applies and performs the operation t @ X := T[t], mak-
ing the program reach a state A′ such that t @ X = n + R[t] is true and thus
T (S′, A′) is true.

Inc rule with counters (from memory)

S A

inc X As ∨Ao

S′ A′

T (S,A)

IncV arM

TIncCntS1 ∨
TIncCntO1

TIncCntS2 ∨
TIncCntO2

T (S′,A′)

Let t be a thread and S an x86-TSO state of the form (LS,M) where LS(t) =
(eip, zf,Q,B) such that X /∈ B and M(X) = n. By rule IncVarM, the x86-
TSO program can move to a state S′ of the form (LS′,M) where LS′(t) =
(eip′, zf ′, Q,B′) such that B′ = (X, n + 1) ++ B and ∀t′ 6= t.LS′(t′) = LS(t′).
Let A be a state such that T (S,A) is true. In particular, the PC[t] register in
A is equivalent to its counterpart in S, and as X is a counter, t @ X[k] = True

is true for exactly n threads. From now on, two cases may apply :

Case 1. t @ X[t] = False is true. Then the rule TIncCntS1 applies, and the
Cubicle-W program reaches a state As. From this state, the rule TIncCntS2
applies and performs the operation t @ X[t] := True, making the program
reach a state A′ such that t @ X[k] = True is true for exactly n+ 1 threads.

Case 2. ∃t′ 6= t. t @ X[t’] = False is true. Then the rule TIncCntO1 ap-
plies, and the Cubicle-W program reaches a state Ao. From this state, the rule

TIncCntO2 applies and performs the operation t @ X[t’] := True, making
the program reach a state A′ such that t @ X[k] = True is true for exactly
n+ 1 threads.

In both cases, state A′ is such that T (S′, A′) is true.

Inc rule with counters (from buffer)

S A

inc X As ∨Ao

S′ A′

T (S,A)

IncV arB

TIncCntS1 ∨
TIncCntO1

TIncCntS2 ∨
TIncCntO2

T (S′,A′)

Let t be a thread and S an x86-TSO state of the form (LS,M) where
LS(t) = (eip, zf,Q,B) such that B = B1 ++ (X, n) ++ B2 and X /∈ B1. By
rule IncVarB, the x86-TSO program can move to a state S′ of the form
(LS′,M) where LS′(t) = (eip′, zf ′, Q,B′) such that B′ = (X, n + 1) ++ B and
∀t′ 6= t.LS′(t′) = LS(t′). Let A be a state such that T (S,A) is true. In partic-
ular, the PC[t] register in A is equivalent to its counterpart in S, and as X is
a counter, t @ X[k] = True is true for exactly n threads. From now on, two
cases may apply :

Case 1. t @ X[t] = False is true. Then the rule TIncCntS1 applies, and the
Cubicle-W program reaches a state As. From this state, the rule TIncCntS2
applies and performs the operation t @ X[t] := True, making the program
reach a state A′ such that t @ X[k] = True is true for exactly n+ 1 threads.

Case 2. ∃t′ 6= t. t @ X[t’] = False is true. Then the rule TIncCntO1 ap-
plies, and the Cubicle-W program reaches a state Ao. From this state, the rule
TIncCntO2 applies and performs the operation t @ X[t’] := True, making
the program reach a state A′ such that t @ X[k] = True is true for exactly
n+ 1 threads.

In both cases, state A′ is such that T (S′, A′) is true.

Cmp rule with counters (from memory)

S A

cmp X, N

S′ A′

T (S,A)

CmpV arMCst

TCmpCntEqN ∨
TCmpCntSNeqN ∨
TCmpCntONeqN

T (S′,A′)

Let t be a thread and S an x86-TSO state of the form (LS,M) where LS(t) =
(eip, zf,Q,B) such that X /∈ B and M(X) = n. By rule CmpVarMCst, the x86-
TSO program can move to a state S′ of the form (LS′,M) where LS′(t) =
(eip′, zf ′, Q,B) such that zf ′ = iszero(n−N) and ∀t′ 6= t.LS′(t′) = LS(t′). Let
A be a state such that T (S,A) is true. In particular, the PC[t] register in A is
equivalent to its counterpart in S, and as X is a counter, t @ X[k] = True is
true for exactly n threads. From now on, three cases may apply :

Case 1. ∀t′. t @ X[t’] = True is true, i.e n = N . Then the rule TCmpCn-
tEqN applies, and the Cubicle-W program reaches a state A′ such that ZF[t]

= 0.

Case 2. t @ X[t] = False is true, i.e n 6= N . Then the rule TCmpCntSNeqN
applies, and the Cubicle-W program reaches a state A′ such that ZF[t] = 1.

Case 3. ∃t′ 6= t. t @ X[t’] = False is true, i.e n 6= N . Then the rule TCm-
pCntONeqN applies, and the Cubicle-W program reaches a state A′ such that
ZF[t] = 1.

In both cases, state A′ is such that T (S′, A′) is true.

Cmp rule with counters (from buffer)

S A

cmp X, N

S′ A′

T (S,A)

CmpV arBCst

TCmpCntEqN ∨
TCmpCntSNeqN ∨
TCmpCntONeqN

T (S′,A′)

Let t be a thread and S an x86-TSO state of the form (LS,M) where
LS(t) = (eip, zf,Q,B) such that B = B1 ++ (X, n) ++ B2 and X /∈ B1. By
rule CmpVarBCst, the x86-TSO program can move to a state S′ of the form
(LS′,M) where LS′(t) = (eip′, zf ′, Q,B) such that zf ′ = iszero(n − N) and
∀t′ 6= t.LS′(t′) = LS(t′). Let A be a state such that T (S,A) is true. In partic-
ular, the PC[t] register in A is equivalent to its counterpart in S, and as X is
a counter, t @ X[k] = True is true for exactly n threads. From now on, three
cases may apply :

Case 1. ∀t′. t @ X[t’] = True is true, i.e n = N . Then the rule TCmpCn-
tEqN applies, and the Cubicle-W program reaches a state A′ such that ZF[t]

= 0.

Case 2. t @ X[t] = False is true, i.e n 6= N . Then the rule TCmpCntSNeqN
applies, and the Cubicle-W program reaches a state A′ such that ZF[t] = 1.

Case 3. ∃t′ 6= t. t @ X[t’] = False is true, i.e n 6= N . Then the rule TCm-
pCntONeqN applies, and the Cubicle-W program reaches a state A′ such that
ZF[t] = 1.

In both cases, state A′ is such that T (S′, A′) is true.

